Abstract

Due to the capability of fast multiparametric quantitative imaging, magnetic resonance fingerprinting (MRF) is becoming a promising quantitative magnetic resonance imaging approach. However, the artifacts caused by the highly undersampled data acquisition lead to inaccurate estimation of the tissue parameter maps. Based on the assumption that the 3-D MRF data can be modeled as a piecewise smooth signal, with the discontinuities localized to the zero sets of a bandlimited function, we exploit the low-rank property of the structured Toeplitz matrix constructed from the Fourier measurements. In addition, we adopt the subspace projection scheme to improve the accuracy of parameter estimation. In order to efficiently solve the regularized problem, we propose an iterative two-stage algorithm, which alternately updates the k -space data and projects the space-time matrix into the dictionary space. Numerical experiments demonstrate that the proposed algorithm shows significant improvement in MRF time-series images reconstruction and can provide more accurate parameter maps over the state-of-the-art algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call