Abstract
Sparsely sampled computed tomography (CT) has been attracting attention as a technique that can reduce the high radiation dose of conventional CT. In general, iterative reconstruction techniques have been applied to sparsely sampled CT to realize high quality images. These methodologies require high computing power due to the modeling of the system and the trajectory of radiation rays. Therefore, the purpose of this study was to obtain high quality three-dimensional (3D) reconstructed images with deep learning under sparse sampling conditions. We used a deep learning model based on a fully convolutional network and a wavelet transform to predict high quality images. To reduce the spatial resolution loss of predicted images, we replaced the pooling layer with a wavelet transform. Three different domains were evaluated - the sinogram domain, the image domain, and the hybrid domain - to optimize a reconstruction technique based on deep learning. To train and develop a deep learning model, The Cancer Imaging Archive (TCIA) dataset was used. Streak artifacts, which generally occur under sparse sampling conditions, were effectively removed from deep learning-based sparsely sampled reconstructed images. However, image characteristics of fine structures varied depending on the application of deep learning technologies. The use of deep learning techniques in the sinogram domain removed streak artifacts well, but some image noise remained. Likewise, when applying deep learning technology to the image domain, a blurring effect occurred. The proposed hybrid domain sparsely sampled reconstruction based on deep learning was able to restore images to a quality similar to fully sampled images. The structural similarity (SSIM) index values of sparsely sampled CT reconstruction based on deep learning technology were 0.85 or higher. Among the three domains studied, the hybrid domain techniques achieved the highest SSIM index values (0.9 or more). We proposed a method of sparsely sampled CT reconstruction from a new perspective - unlike iterative reconstruction. In addition, we developed an optimal deep learning-based sparse sampling reconstruction technique by evaluating image quality with deep learning technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.