Abstract
BackgroundThe development of Raspberry Pi-based recording devices for video analyses of drug self-administration studies has been shown to be promising in terms of affordability, customizability, and capacity to extract in-depth behavioral patterns. Yet, most video recording systems are limited to a few cameras making them incompatible with large-scale studies. New methodWe expanded the PiRATeMC (Pi-based Remote Acquisition Technology for Motion Capture) recording system by increasing its scale, modifying its code, and adding equipment to accommodate large-scale video acquisition, accompanied by data on throughput capabilities, video fidelity, synchronicity of devices, and comparisons between Raspberry Pi 3B+ and 4B models. ResultsUsing PiRATeMC default recording parameters resulted in minimal storage (∼350MB/h), high throughput (< ∼120 seconds/Pi), high video fidelity, and synchronicity within ∼0.02 seconds, affording the ability to simultaneously record 60 animals in individual self-administration chambers for various session lengths at a fraction of commercial costs. No consequential differences were found between Raspberry Pi models. Comparison with existing method(s)This system allows greater acquisition of video data simultaneously than other video recording systems by an order of magnitude with less storage needs and lower costs. Additionally, we report in-depth quantitative assessments of throughput, fidelity, and synchronicity, displaying real-time system capabilities. ConclusionsThe system presented is able to be fully installed in a month’s time by a single technician and provides a scalable, low cost, and quality-assured procedure with a high-degree of customization and synchronicity between recording devices, capable of recording a large number of subjects and timeframes with high turnover in a variety of species and settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.