Abstract

To produce the high quality H2-rich syngas from biomass and plastic wastes, a two-stage pyrolysis-gasification system involving pyrolysis and catalytic gasification is considered as a suitable route. Generally, synthesis of highly active, low cost and coke-resistant catalyst for tar cracking is the key factor. A series of monometallic catalysts of Ni@CNF/PCs and Fe@CNF/PCs and the bimetallic Ni–Fe@CNF/PCs catalyst were prepared by a simple one-step pyrolysis approach for high quality syngas production from pyrolysis-gasification of biomass and plastic wastes. The results indicated that the bimetallic Ni–Fe@CNF/PCs catalyst appeared as the optimal catalyst in affording the best compromise between catalytic activity and stability with the existence of the excellent dispersibility of the Fe0.64Ni0.36 alloy nanoparticles and the carbon nanofibers/porous carbon composite structure. In addition, the optimal operation conditions of biomass/plastic ratio of 1/2 and gasification temperature of 700 °C were observed for the bimetallic Ni–Fe@CNF/PCs catalyst to play best roles in the H2-rich syngas quality, with up to 33.66 mmol H2/g biomass, and tar yields as low as 5.66 mg/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.