Abstract

Dielectric microcavities with quality factors (Q-factors) in the thousands to billions markedly enhance light-matter interactions, with applications spanning high-efficiency on-chip lasing, frequency comb generation and modulation and sensitive molecular detection. However, as the dimensions of dielectric cavities are reduced to subwavelength scales, their resonant modes begin to scatter light into many spatial channels. Such enhanced scattering is a powerful tool for light manipulation, but also leads to high radiative loss rates and commensurately low Q-factors, generally of order ten. Here, we describe and experimentally demonstrate a strategy for the generation of high Q-factor resonances in subwavelength-thick phase gradient metasurfaces. By including subtle structural perturbations in individual metasurface elements, resonances are created that weakly couple free-space light into otherwise bound and spatially localized modes. Our metasurface can achieve Q-factors >2,500 while beam steering light to particular directions. High-Q beam splitters are also demonstrated. With high-Q metasurfaces, the optical transfer function, near-field intensity and resonant line shape can all be rationally designed, providing a foundation for efficient, free-space-reconfigurable and nonlinear nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.