Abstract

High-quality organic-inorganic hybrid perovskite films are crucial for excellent performance of photoelectric devices. Herein, we demonstrate a pressure-assisted space-confined solvent-engineering strategy to grow highly oriented, pinhole-free thin films of CH3NH3PbI3 with large-scale crystalline grains, high smoothness, and crystalline fusion on grain boundaries. These single-crystalline grains vertically span the entire film thickness. Such a film feature dramatically reduces recombination loss and then improves the transport property of charge carriers in the films. Consequently, the photodetector devices, based on the high-quality CH3NH3PbI3 films, exhibit high photocurrent (105 μA under 671 nm laser with a power density of 20.6 mW/cm2 at 10 V), good stability, and, especially, an ultrahigh on/off ratio (Ilight/Idark > 2.2 × 104 under an incident light of 20.6 mW/cm2). These excellent performances indicate that the high-quality films will be potential candidates in other CH3NH3PbI3-based photoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.