Abstract

Generative adversarial networks (GAN) are widely used for fast compressed sensing magnetic resonance imaging (CSMRI) reconstruction. However, most existing methods are difficult to make an effective trade-off between abstract global high-level features and edge features. It easily causes problems, such as significant remaining aliasing artifacts and clearly over-smoothed reconstruction details. To tackle these issues, we propose a novel edge-enhanced dual discriminator generative adversarial network architecture called EDDGAN for CSMRI reconstruction with high quality. In this model, we extract effective edge features by fusing edge information from different depths. Then, leveraging the relationship between abstract global high-level features and edge features, a three-player game is introduced to control the hallucination of details and stabilize the training process. The resulting EDDGAN can offer more focus on edge restoration and de-aliasing. Extensive experimental results demonstrate that our method consistently outperforms state-of-the-art methods and obtains reconstructed images with rich edge details. In addition, our method also shows remarkable generalization, and its time consumption for each 256 × 256 image reconstruction is approximately 8.39 ms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.