Abstract

This study investigates a high Q-factor spiral inductor fabricated by the CMOS (complementary metal oxide semiconductor) process and a post-process. The spiral inductor is manufactured on silicon substrate using the 0.35 mum CMOS process. In order to reduce the substrate loss and enhance the Q-factor of the inductor, silicon substrate under the inductor is removed using a post-process. The post-process uses RIE (reactive ion etching) to etch the sacrificial layer of silicon dioxide, and then TMAH (tetra methyl ammonium hydroxide) is employed to remove the underlying silicon substrate and obtain the suspended spiral inductor. The advantage of the post process is compatible with the CMOS process. The Agilent 8510 C network analyzer and a Cascade probe station are used to measure the performances of the spiral inductor. Experiments indicate that the spiral inductor has a Q-factor of 15 at 11 GHz, an inductance of 4 nH at 25.5 GHz and a self-resonance frequency of about 27 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.