Abstract

Asphaltenes are known to be interfacially active in many circumstances such as at toluene-water interfaces. Furthermore, the term micelle has been used to describe the primary aggregation of asphaltenes in good solvents such as toluene. Nevertheless, there has been significant uncertainty regarding the critical micelle concentration (CMC) of asphaltenes and even whether the micelle concept is appropriate for asphaltenes. To avoid semantic debates we introduce the terminology critical nanoaggregate concentration (CNAC) for asphaltenes. In this report, we investigate asphaltenes and standard surfactants using high-Q, ultrasonic spectroscopy in both aqueous and organic solvents. As expected, standard surfactants are shown to exhibit a sharp break in sonic velocity versus concentration at known CMCs. To prove our methods, we measured known surfactants with CMCs in the range from 0.010 g/L to 2.3 g/L in agreement with the literature. Using density determinations, we obtain micelle compressibilities consistent with previous literature reports. Asphaltenes are also shown to exhibit behavior similar to that of ultrasonic velocity versus concentration as standard surfactants; asphaltene CNACs in toluene occur at roughly 0.1 g/L, although the exact concentration depends on the specific (crude oil) asphaltene. Furthermore, using asphaltene solution densities, we show that asphaltene nanoaggregate compressibilities are similar to micellar compressibilities obtained with standard nonionic surfactants in toluene. These results strongly support the contention that asphaltenes in toluene can be treated roughly within the micelle framework, although asphaltenes may exhibit small levels of aggregation (dimers, etc.) below their CNAC. Furthermore, our extensive results on known surfactants agree with the literature while the asphaltene CNACs reported here are one to two orders of magnitude lower than most previously published results. (Previous work utilized the terminology "micelle" and "CMC" for asphaltenes.) We believe that the previously reported high concentrations for asphaltene CMCs do not correspond to primary aggregation; perhaps they refer to higher levels of aggregation or perhaps to a particular surface structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.