Abstract

AbstractInfragravity waves have received the least study of any class of waves in the deep ocean. This paper analyzes a 389‐day‐long deep ocean pressure record from the Hawaii Ocean Mixing Experiment for the presence of narrowband (≲2 μHz) components and nonstationarity over 400–4,000 μHz using a combination of fitting a mixture noncentral/central χ2 model to spectral estimates, high‐resolution multitaper spectral estimation, and computation of the offset coherence between distinct frequencies for a given data segment. In the frequency band 400–1,000 μHz there is a noncentral fraction of 0.67 ± 0.07 that decreases with increasing frequency. Evidence is presented for the presence of tidal harmonics in the data over the 400‐ to 1,400‐μHz bands. Above ~2,000 μHz the noncentral fraction rises with frequency, comprising about one third of the spectral estimates over 3,000–4,000 μHz. The power spectrum exhibits frequent narrowband peaks at 6–11 standard deviations above the noise level. The widths of the peaks correspond to a Q of at least 1,000, vastly exceeding that of any oceanic or atmospheric process. The offset coherence shows that the spectral peaks have substantial (p = 0.99–0.9999) interfrequency correlation, both locally and between distinct peaks within a given analysis band. Many of the peak frequencies correspond to the known values for solar pressure modes that have previously been observed in solar wind and terrestrial data, while others are the result of nonstationarity that distributes power across frequency. Overall, this paper documents the existence of two previously unrecognized sources of infragravity wave variability in the deep ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call