Abstract

The realization of high-Q single-mode lasing on the microscale is significant for the advancement of on-chip integrated light sources. It remains a challenging trade-off between Q-factor enhancement and light-field localization to raise the lasing emission rate. Here, we fabricated a zero-dimensional perovskite microcavity integrated with a nondamage pressed microlens to three-dimensionally tailor the intracavity light field and demonstrated linearly and nonlinearly (two-photon) pumped lasing by this microfocusing configuration. Notably, the microlensing microcavity experimentally achieves a high Q-factor (16700), high polarization (99.6%), and high Purcell factor (11.40) single-mode lasing under high-repetition pulse pumping. Three-dimensional light-field confinement formed by the microlens and plate microcavity simultaneously reduces the mode volume (∼3.66 μm3) and suppresses diffraction and transverse walk-off loss, which induces discretization on energy-momentum dispersions and spatial electromagnetic-field distributions. The Q factor and Purcell factor of our lasing come out on top among most of the reported perovskite microcavities, paving a promising avenue toward further studying electrically driven on-chip microlasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.