Abstract

Magnetic fields produced by the body can provide information for medical diagnoses, patient monitoring, and robotic control. Measuring biomagnetic signals locally allows for an external sensing mechanism that is non-invasive and non-contact. Despite these advantages, current sensing systems are either prohibitively large, consume excessive power, or both when applied to on-body applications. This study explores how multiferroic systems can provide an alternative to current biomagnetic sensing platforms. While maintaining a very small die size (2.25mm2) and low power consumption (13mW), multiferroic resonant MEMS magnetometers can provide high sensitivity and low noise at room temperature. Two resonant plate designs operating in the MHz regime are explored, implementing a strain modulation technique to upconvert low frequency magnetic field signals to the resonance band of the plates, utilizing the high device Q factors. When operated below the Duffing limit, sensitivities of 58.4mA/T and 37.7mA/T with resolutions of 5.03nT/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula> Hz and 2.72nT/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula> Hz, respectively, were observed for the two devices. Without electric modulation, the large sensor design shows a sensitivity of 1.56A/T and a resolution of 2pT/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula> Hz when sensing an AC magnetic field at the device resonance. [2022-0158]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.