Abstract
We report on the efficient biochemical synthesis of a large DNA dumbbell starting from a pair of short DNA hairpins with long single-stranded tails of arbitrary sequence. The DNA dumbbell is obtained by enzymatic ligation yielding a 94-bp duplex stem closed at both termini by single-stranded loops of 5 nt. Following ligation, all unligated precursors and monoligated by-products were multiply biotinylated via nick-translation or primer-extension or both. Thus, they could readily be removed from the DNA dumbbell preparation by a mild biomagnetic separation procedure. The closed conformation of the purified DNA dumbbell was verified by its altered gel mobility as compared with unligated or monoligated samples and by an exonuclease assay. Considering the promising therapeutic potential of DNA dumbbells, the developed biosynthetic approach could be used for high-purity preparation of longer, covalently closed DNA decoys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.