Abstract
Actually, the potential and deposites are rich and spread in many place, but the process from raw material to industrial product is not optimal yet. In this work, the manufacture of iron sand was done using direct reduction technique by compact coals as reductor. The carbon compound of coals were using for releasing oxide in magnetite compounds (Fe3O4) of iron sand, so it could be transformed to Fe phase. The iron sand was firstly milled using high energy ball mill (HEBM) for 0, 10, 20, and 40 hours. Then the iron sands samples were mixed with coals, bentonite and compacted using hydraulic press. Then, loaded into furnace and sintered at 700 °C, 800 °C, and 900 °C. As the results, it was identified (using XRF) that the major phase was Fe2O3 (75.40 %). Consistent with XRF results, the phase composition observation by using XRD was shown that the major phase of sample was Fe2O3 (hematite). It was also shown that the crystallite size of the sample was around 8 nm, as calcultaed using Scherrer formula. The magnetic behavior investigation was showed that the decreasing in magnetic saturation value (Ms) and remanent (Br) and followed by increasing the coercivity value (Hc).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.