Abstract

Filamentous hemagglutinin (FHA) is a critical adhesion molecule produced by Bordetella pertussis (BP), the causative agent of highly contagious respiratory infection known as whooping cough. FHA plays a pivotal role in the pathogenesis of whooping cough and is a key component of acellular pertussis vaccines (aPV). However, conventional purification methods for FHA often involve labor-intensive processes and result in low purity and recovery rates. Therefore, this study explores the use of monoclonal and polyclonal antibodies as specific tools to achieve highly pure and efficient FHA purification. To generate FHA-specific antibodies, polyclonal antibodies were produced by immunizing sheep and monoclonal antibodies (MAbs) were generated by immunizing mice with recombinant and native FHA. The MAbs were selected based on affinity, isotypes, and specificity, which were assessed through ELISA and Western blot assays. Two immunoaffinity columns, one monoclonal and one polyclonal, were prepared for FHA antigen purification. The purity and recovery rates of these purifications were determined using ELISA, SDS-PAGE, and immunoblotting. Furthermore, the MAbs were employed to develop an ELISA assay for FHA antigen concentration determination. The study's findings revealed that immunoaffinity column-based purification of FHA resulted in a highly pure antigen with recovery rates of approximately 57% ± 6.5% and 59% ± 7.9% for monoclonal and polyclonal columns, respectively. Additionally, the developed ELISA exhibited appropriate reactivity for determining FHA antigen concentration. This research demonstrates that affinity chromatography is a viable and advantageous method for purifying FHA, offering superior purity and recovery rates compared to traditional techniques. This approach provides a practical alternative for FHA purification in the context of aPV development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call