Abstract

Antidiuretic hormone (ADH) stimulation of toad urinary bladder granular cells causes simultaneous increases in transepithelial water and H+ permeabilities (PF and PH+, respectively), suggesting that ADH-elicited water channels inserted into granular cell apical membranes might be permeable to both water and H+. We have previously used self-quenching fluorophores entrapped within endocytic vesicles selectively retrieved from water-permeable apical membranes to measure vesicle PF. The membranes of these vesicles possess an extremely high PF such that our measurements provide only minimum estimates of vesicle PF and have limited our ability to quantitate the properties of ADH water channels. We therefore quantitated vesicle PH+ using similar rapid mixing techniques. Vesicle PH+ was 5.1 +/- 0.5 x 10(-3) cm/s. Activation energy of this process was 3.6 +/- 0.6 kcal/mol, indicative of H+ flux through an aqueous channel. The mercurial reagent, para-chloromercuribenzenesulfonate (PCMBS), which inhibits ADH-stimulated transepithelial PF in intact bladders by 50-60%, inhibited vesicle PH+ by 55%. N-Ethylmaleimide and phloretin, which do not alter ADH-stimulated PF, did not affect vesicle PH+. We conclude that membranes containing ADH water channels possess substantial PH+ that likely reflects proton flux through water channels. The apparent high PH+ of the ADH water channel may have important implications for intracellular trafficking of these water channels in ADH-responsive epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call