Abstract

H-ZSM-5 zeolite was treated with phosphorus acid by impregnating H-ZSM-5 with aqueous solutions of phosphoric acid at various concentrations. H-ZSM-5 (P-HZSM-5) modified with phosphoric acid was used as a catalyst for the methanol-to-olefin reaction. The molar ratios of P/Si and Si/Al in H-ZSM-5 and P-HZSM-5 were measured by EDX analysis. The Si/Al molar ratios of P-HZSM-5 increased with higher concentration of H3PO4 in the solution, which might be caused by partial dealumination of H-ZSM-5 by the H3PO4 treatment. The P/Si molar ratio of P-HZSM-5 after washing was proportional to the H3PO4 concentrations in the aqueous solutions. The remaining phosphorus species after the washing must be strongly adsorbed by interaction with the pore surface of H-ZSM-5 zeolite. The P-HZSM-5 catalyst showed very high propylene selectivity up to 57% with methanol conversion of 100%. Furthermore, catalyst stability was significantly improved for the P-HZSM-5 catalysts. Ammonia TPD spectra showed that the strong acid sites of H-ZSM-5 disappeared after the phosphoric acid treatment. Consequently, the formation of aromatics and coke was inhibited, resulting in higher light olefin selectivity and catalyst stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.