Abstract

The Hepatitis B Virus X (HBx) protein is a potential therapeutic target for the treatment of hepatocellular carcinoma. However, consistent expression of the protein as insoluble inclusion bodies in bacteria host systems has largely hindered HBx manufacturing via economical biosynthesis routes, thereby impeding the development of anti-HBx therapeutic strategies. To eliminate this roadblock, this work reports the development of the first ‘chromatography refolding’-based bioprocess for HBx using immobilised metal affinity chromatography (IMAC). This process enabled production of HBx at quantities and purity that facilitate their direct use in structural and molecular characterization studies. In line with the principles of quality by design (QbD), we used a statistical design of experiments (DoE) methodology to design the optimum process which delivered bioactive HBx at a productivity of 0.21 mg/ml/h at a refolding yield of 54% (at 10 mg/ml refolding concentration), which was 4.4-fold higher than that achieved in dilution refolding. The systematic DoE methodology adopted for this study enabled us to obtain important insights into the effect of different bioprocess parameters like the effect of buffer exchange gradients on HBx productivity and quality. Such a bioprocess design approach can play a pivotal role in developing intensified processes for other novel proteins, and hence helping to resolve validation and speed-to-market challenges faced by the biopharmaceutical industry today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.