Abstract

Abstract A significant area of late Neoproterozoic–early Cambrian seafloor hosted a ferruginous to euxinic condition as a result of expanded primary productivity-driven pumping of organic matter into subsurface water column and weak water column mixing in the concomitant sea. However, the cause and extent of increased marine primary productivity during this time interval remain unknown. To estimate the primary productivity in a late Neoproterozoic sea, this study investigated the Sirbu Shale, Vindhyan Supergroup, for trace elements, organic carbon isotopes and total organic carbon (TOC). Among the trace elements, cadmium (Cd), known for extremely low concentration in crustal rocks but higher abundance in biogenic organic matter, was the key parameter in the palaeoproductivity estimation. The Cd enrichment in the Sirbu Shale samples is comparable to that in modern marine sediments of the oxygen minimum zones in Chilean margins, Arabian Sea and Gulf of California characterized by high primary productivity and seasonal upwelling. In terms of Cd enrichment, the lower section of the Sirbu Shale was deposited under suboxic conditions, while the upper section was deposited under a relatively less reducing condition. Cd/Mo ratios > 0.36 in the shale sample indicate that the palaeoproductivity was strongly influenced by the nutrient supply through sea-shelf upwelling. Using non-detrital enrichment of Cd in Sirbu Shale samples, we calculated that the TOC exported to the floor of Sirbu Shale palaeodepositional setting through primary productivity ranged from 0.71 to 10.16%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call