Abstract

The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10−2– 5.2 × 10−1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10−2–10−4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call