Abstract

BackgroundRecently, production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations. Therefore, the spread of high-level aminoglycoside resistance determinants has become a great concern.MethodsBetween January 2006 and July 2008, 680 distinct Escherichia coli clinical isolates were collected from a teaching hospital in Wenzhou, China. PCR and DNA sequencing were used to identify 16S rRNA methylase and extended-spectrum β-lactamase (ESBL) genes, including armA and rmtB, and in situ hybridization was performed to determine the location of 16S rRNA methylase genes. Conjugation experiments were subsequently performed to determine whether aminoglycoside resistance was transferable from the E. coli isolates via 16S rRNA methylase-bearing plasmids. Homology of the isolates harboring 16S rRNA methylase genes was determined using pulse-field gel electrophoresis (PFGE).ResultsAmong the 680 E. coli isolates, 357 (52.5%), 346 (50.9%) and 44 (6.5%) isolates were resistant to gentamicin, tobramycin and amikacin, respectively. Thirty-seven of 44 amikacin-resistant isolates harbored 16S rRNA methylase genes, with 36 of 37 harboring the rmtB gene and only one harboring armA. The positive rates of 16S rRNA methylase genes among all isolates and amikacin-resistant isolates were 5.4% (37/680) and 84.1% (37/44), respectively. Thirty-one isolates harboring 16S rRNA methylase genes also produced ESBLs. In addition, high-level aminoglycoside resistance could be transferred by conjugation from four rmtB-positive donors. The plasmids of incompatibility groups IncF, IncK and IncN were detected in 34, 3 and 3 isolates, respectively. Upstream regions of the armA gene contained ISCR1 and tnpU, the latter a putative transposase gene,. Another putative transposase gene, tnpD, was located within a region downstream of armA. Moreover, a transposon, Tn3, was located upstream of the rmtB. Nineteen clonal patterns were obtained by PFGE, with type H representing the prevailing pattern.ConclusionA high prevalence of plasmid-mediated rmtB gene was found among clinical E. coli isolates from a Chinese teaching hospital. Both horizontal gene transfer and clonal spread were responsible for the dissemination of the rmtB gene.

Highlights

  • Production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations

  • Escherichia coli producing plasmid-mediated isolates extendedspectrum β lactamases (ESBLs) conferring to resistance to third-generation cephalosporins are mainly associated with hospital-acquired infections [11], but plasmid-mediated ArmA, RmtB and NpmA 16S rRNA methylases have been found in E. coli as well [5,10]

  • Prevalence of 16S rRNA methylase genes and antimicrobial susceptibility Among tested 680 E. coli isolates, 357 (52.5%), 346 (50.9%) and 44 (6.5%)isolates were resistant to gentamicin, tobramycin and amikacin, respectively

Read more

Summary

Introduction

Production of 16S rRNA methylases by Gram-negative bacilli has emerged as a novel mechanism for high-level resistance to aminoglycosides by these organisms in a variety of geographic locations. 16S rRNA methylases have recently emerged as a novel mechanism for high-level resistance to all 4, 6-. Six plasmid-encoded 16S rRNA methylases, including ArmA, RmtA, RmtB, RmtC , RmtD and NpmA, have been identified in clinical isolates of Gram-negative bacilli from multiple geographic locations [4,5,6,7,8,9,10]. Escherichia coli producing plasmid-mediated isolates extendedspectrum β lactamases (ESBLs) conferring to resistance to third-generation cephalosporins are mainly associated with hospital-acquired infections [11], but plasmid-mediated ArmA, RmtB and NpmA 16S rRNA methylases have been found in E. coli as well [5,10]. The aim of this study was to investigate the occurrence of 16S rRNA methylase genes in E. coli clinical isolates from a teaching hospital in Wenzhou, China

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.