Abstract

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance ()) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of . We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.

Highlights

  • Recent studies of neuronal networks of identifiable neurons have shown that the same neuron type can significantly vary in membrane properties from animal to animal

  • To check whether the recovery of functionality was prevalent among other half-center oscillators built from multistable units, we explored the activity of HCOs constructed with the 421 cases that were multistable in the original database, as described above

  • The same identified neurons and their synaptic connections in a circuit show a high level of variability from preparation to preparation and yet produce surprisingly similar, appropriate patterns of activity in accordance with their function [1,2,3,4]

Read more

Summary

Introduction

Recent studies of neuronal networks of identifiable neurons have shown that the same neuron type can significantly vary in membrane properties from animal to animal. The biophysical characteristics of the single neurons performing the same task can be orders-of-magnitude different [1,2,3,4]. This fact testifies to the great flexibility and robustness demonstrated by nervous systems. With a database a population of models is considered so that those parameter sets (cases) which satisfy constraints derived from experimental data are identified as functional. Following this approach, we obtained a set of cases producing functional activity the underlying ionic current compositions were different. The apparent simplicity of the product of the brute-force database approach is moderated by complications posed by multistability

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.