Abstract

Background:Emergence of resistance to multiple antimicrobial agents in Non-Fermenting Gram-Negative Bacilli is a major problem to public health, as it limits drug treatment options against infections. The aim of this study was to determine the prevalence of multi-drug resistance and extended spectrum beta lactamase production in Non-Fermenting Gram-Negative Bacilli.Materials and methods:Different clinical samples were collected and processed following standard procedures. Each sample was then inoculated onto culture media. Identification, drug susceptibility testing, and extended spectrum beta lactamase production of the isolates were carried out by using the VITEK 2 compact system.Results:Among 996 clinical samples, 135 samples yielded Non-Fermenting Gram-Negative Bacilli of which Pseudomonas and Acinetobacter species were the commonest isolates. The overall drug resistance rates of Non-Fermenting Gram-Negative Bacilli were above 80% against ampicillin (89.6%), cefuroxime axetil (88.9%), nitrofurantoin (85.9%), cefalotin (84.4%), cefoxitin (83.7%), cefazolin (83.0%), and cefuroxime (83.0%). Tobramycin with a resistance rate of 19.3% was the most active antimicrobial agent. Out of 135 isolates, 81.5% were multi-drug resistant of which 13.3% were extensively drug resistant and 10.4% were pandrug resistant. Extended spectrum beta lactamase production was detected in 48.9% of the isolates.Conclusions:The spectrum of bacterial species isolated was diverse. The isolates demonstrated high level of drug resistance in different classes of antibiotics. The magnitude of multi-drug resistance and the level of extended spectrum beta lactamase production were high. Hence, further studies on multi-drug resistant and extended spectrum beta lactamase producing Non-Fermenting Gram-Negative Bacilli both in the community and in hospital setting are essential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.