Abstract

S. Choleraesuis is a highly invasive zoonotic pathogen that causes a serious systemic infection in humans. The emergence and increase of resistance to ceftriaxone and ciprofloxacin among S. Choleraesuis has become a serious therapeutic problem. The present study demonstrated high frequency of antimicrobial resistance in Salmonella Choleraesuis among 414 nontyphoidal Salmonella isolates from bacteremic patients in Thailand. High rates of ceftriaxone (58.3%) and ciprofloxacin (19.6%) resistances were observed in S. Choleraesuis isolates. The dissemination of the self-transferable blaCTX-M-14-carrying IncFIIs, IncFII, and IncI1 plasmids and blaCMY-2-carrying IncA/C plasmid along with the clonal spread of blaCMY-2-harbouring S. Choleraesuis isolates contributed to the high frequency of resistance to extended-spectrum cephalosporins (ESCs; third- and fourth-generation cephalosporins) during 2005–2007. We reported the first occurrence of ceftazidime-hydrolysing CTX-M-55 in S. Choleraesuis isolates which dramatically increased and became the most abundant CTX-M variant among ESC-resistant S. Choleraesuis isolates during 2012–2016. The spread of clone pulsotype B3 was due to the dissemination of IncA/C plasmids carrying both blaCTX-M-55 and qnrS1 among ciprofloxacin-resistant S. Choleraesuis isolates harbouring D87G in GyrA. These isolates were apparently responsible for the high rates of co-resistance to ESCs and ciprofloxacin (51.3%) during 2012–2016. This study emphasizes the importance to have an action plan to control the dissemination of antimicrobial resistance in S. Choleraesuis since this poses a threat to global health due to travel and trade in animal food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call