Abstract

ObjectiveThe production of β-lactamase enzymes such as AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) is among the main mechanisms for resistance to expanded-spectrum cephalosporins. The present study was conducted to investigate the prevalence and molecular epidemiology of plasmid-mediated AmpC beta (β)-lactamase in ESBL co-producing Escherichia coli (E. coli) and Klebsiella spp. (Klebsiella pneumoniae and Klebsiella oxytoca) clinical isolates in the northeast of Iran. MethodsA total of 602 E. coli and Klebsiella spp. clinical isolates were collected from three hospitals in Mashhad (northeast of Iran). A combination disk test (CDT) was performed for the phenotypic detection of ESBLs. Screening for the detection of AmpC β-lactamases was performed by a susceptibility test to a cefoxitin disc among ESBL producing isolates. A confirmatory test for AmpC β-lactamases was performed using the Mast® D68C test. Identification of plasmid-mediated AmpC cluster genes was done by multiplex polymerase chain reaction (PCR). ResultsAmong 336 ESBL-producing strains, 230 (68.4%) isolates were resistant to cefoxitin. Results of the Mast® D68C test showed that 30% (69/230) of cefoxitin-resistant isolates simultaneously exhibited ESBL and AmpC activity and 22% (51/230) of isolates probably showed multi-drug resistant (MDR) phenotype. Results of multiplex PCR among ESBL-positive isolates showed that, 16.7% (56/336) of isolates were positive for plasmid-borneampC cluster genes, and CMY (38%) was the most frequent genotype of plasmid mediated AmpC. ConclusionFindings of the study revealed that an increase in the prevalence of ESBL and AmpC co-producer in E. coli and Klebsiella spp. strains may become an important public health issue. Therefore, there is a vital need for surveillance of spread of these clinical isolates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call