Abstract

Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65–79), cefotaxime (27% of 6700 isolates, 95% CI: 12–44), chloramphenicol (45% of 7012 isolates, 95% CI: 35–53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11–25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52–73), nalidixic acid (30% of 9819 isolates, 95% CI: 21–40), oxytetracycline (78% of 1451 isolates, 95% CI: 65–88), streptomycin (58% of 3831 isolates, 95% CI: 44–72), tetracycline (67% of 11,847 isolates, 95% CI: 59–74), and trimethoprim (67% of 3265 isolates, 95% CI: 59–75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.

Highlights

  • Antibiotic resistance (ABR) is currently identified as one of the biggest threats to global health and to food security and d­ evelopment[1]

  • The European Centre for Disease Prevention and Control (ECDC) reported that 25,000 people died of diseases caused by antibiotic-resistant bacteria in 2007, which is over half the number caused by road traffic accidents in the same ­countries[12]

  • We aim to provide an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli to commonly prescribed antibiotics in community settings in low- and middle-income countries (LMICs) to bring to light the extent of the problem and inform interventions targeted at controlling and preventing antibiotic resistance

Read more

Summary

Introduction

Antibiotic resistance (ABR) is currently identified as one of the biggest threats to global health and to food security and d­ evelopment[1]. In 2015, this number increased to about 33,000 deaths resulting from an estimated 671,689 infections of selected antibiotic-resistant bacteria leading to 874,541 total disability-adjusted life-years (DALYs)[13]. This indicates that the burden in the European Union and European Economic Area is on the rise. Many studies have shown a high prevalence of resistance to antibiotics by pathogenic and commensal bacteria in healthcare ­settings[8] When comparing these studies to those conducted in community settings there is a large discrepancy, especially in L­ MICs36. This is as a result of the fact that little attention is given at Scientific Reports | (2021) 11:3372 |

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call