Abstract

Herein, a high pressure-sensitive and stable fiber Fabry-Perot (FP) interferometer with nano-diaphragm assembled by H-O catalysis bonding is proposed and demonstrated. In order to assemble a nano-diaphragm-based fiber FP interferometer by H-O catalysis bonding technique, a SiO2 film, introduced as a bridging layer on the nano-diaphragm, can be regarded as a solid adhesive to bridge hollow-core fiber end-face and nano-diaphragm. As thus, by depositing bonded layers on different diaphragm materials, this H-O catalysis bonding technology can be used to for assembling FP interferometer with different materials nano-diaphragms. Experimentally, Si nano-diaphragm is transferred to hollow-core fiber end-face to build a stable fiber FP interferometer without polymeric adhesive. Experimental results reveal that this Si nano-diaphragm-based fiber FP interferometer has a high (79.6 pm/kPa) pressure sensitivity and a low (17.3 pm/°C) temperature sensitivity. Besides that, different materials nano-diaphragm also can be assembled by using this H-O catalysis bonding technique, and the functional FP interferometer can be realized by using functional nano-diaphragm material. Thus, a Pd nano-diaphragm is successfully assembled to build a FP interferometer with a hydrogen concentration measurement capacity. Further investigation will focus on exploitation of multi-material nano-film patterning transfer and different nano-film integration by using this H-O catalysis bonding transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call