Abstract

Deformation-induced grain growth has been reported in nanocrystalline (nc) materials under indentation and severe cyclic loading, but not under any other deformation mode. This raises an issue on critical conditions for grain growth in nc materials. This study investigates deformation-induced grain growth in electrodeposited nc Ni during high-pressure torsion (HPT). Our results indicate that high stress and severe plastic deformation are required for inducing grain growth, and the upper limit of grain size is determined by the deformation mode and parameters. Also, texture evolution suggests that grain-boundary-mediated mechanisms played a significant role in accommodating HPT strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.