Abstract

This study reports that solid-state reactions occur by the application of high-pressure torsion (HPT) to the Al–Cu system even at low homologous temperature. A bulk form of disc consisting of two separate half-discs of pure Al and pure Cu are processed by HPT at ambient temperature under a pressure of 6GPa. X-ray diffraction analysis and high-resolution transmission electron microscopy confirm the formation of different intermetallic phases such as Al2Cu, AlCu and Al4Cu9, as well as the dissolution and supersaturation of Al and Cu in each matrix. It is shown that the diffusion coefficient is enhanced by 1012–1022 times during the HPT processing in comparison with the lattice diffusion and becomes comparable to the surface diffusion. The enhanced diffusion is attributed to the presence of a high density of lattice defects such as vacancies, dislocations and grain boundaries produced by HPT processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.