Abstract

Three different alpha-amylases from Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis, were mutually compared with respect to thermal stability, pressure stability, and combined pressure-temperature stability. Measurements of residual enzyme activity and residual denaturation enthalpy showed that the alpha-amylase from B. licheniformis has by far the highest thermostability and that the two other alpha-amylases have thermostabilities of the same order of magnitude. FTIR spectroscopy showed that changes in the conformation of the alpha-amylases from B. amyloliquefaciens, B. subtilis, and B. licheniformis due to pressure occurred at about 6.5, 7.5, and 11 kbar, respectively. It seemed that, for the enzymes studied, thermal stability was correlated with pressure stability. As to the resistance under combined heat and high pressure, the alpha-amylase from B. licheniformis was much more stable than the alpha-amylases from B. amyloliquefaciens and B. subtilis, the latter two being about equally stable. It appears that under high pressure and/or temperature, B. licheniformis alpha-amylase is the most resistant among the three enzymes studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.