Abstract

Magnesium base alloys are very attractive for hydrogen storage due to their large hydrogen capacity, small weight and low-cost. We have designed a new synthesis method for the ternary metal hydride perovskite system Na1−xLixMgH3, based on the direct reaction of simple hydrides under high-pressure and moderate-temperature conditions. Well-crystallized samples were obtained in a piston-cylinder hydrostatic press at moderate pressures of 2GPa and temperatures around 750°C from mixtures of MgH2, NaH and LiH enclosed in gold capsules. X-ray and neutron powder diffraction analysis were used to identify the purity of the samples and provide an accurate description of the crystal structure features (GdFeO3 type). Na1−xLixMgH3 hydrides series (0≤x≤0.18) show an orthorhombic symmetry with space group Pnma (No. 62). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been carried out to determine the hydrogen desorption temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call