Abstract

A new polymorph of the triple perovskite Ba3CuOs2O9, which usually exists in the orthorhombic phase, was synthesized under high-pressure and high-temperature conditions at 6 GPa and 1100 °C. Under the synthetic condition, Ba3CuOs2O9 crystallizes into a hexagonal structure (P63/mmc) with a = 5.75178(1) Å and c = 14.1832(1) Å, and undergoes a 1.36% increment in density, compared to that of the orthorhombic phase. Although Ba3CuOs2O9 maintains its 6 H perovskite-type structure, the distribution of Cu and Os atoms are dramatically altered; (Cu)4a(Os,Os)8f transits to (Os)2a(Cu,Os)4f ordering over the corner- and face-sharing sites, respectively. The hexagonal Ba3CuOs2O9 exhibits a ferrimagnetic transition at 290 K, which is in stark contrast to the antiferromagnetic transition at 47 K exhibited by the orthorhombic Ba3CuOs2O9. The enhanced transition temperature is most likely due to the strongly antiferromagnetic Os5+–O–Os5+ bonds and the moderately antiferromagnetic Os5+–O–Cu2+ bonds, the angles of which are both approximately 180°. The 290 K ferrimagnetic transition temperature is the highest reported for triple-perovskite osmium oxides. Besides, the coercive field is greater than 70 kOe at 5 K, which is remarkable among the coercive fields of magnetic oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.