Abstract
Single crystals of sodium containing silicon clathrate compounds Na8Si46 (type I) and NaxSi136 (type II) were prepared from the mixtures of NaSi and Si under high-pressure and high-temperature conditions of 5 GPa at 600-1000 °C. The type II crystals were obtained at relatively low-temperature conditions of 700-800 °C, which were found to have a Na excess composition Na30.5Si136 in comparison with the compounds NaxSi136 (x ≤ 24) obtained by a thermal decomposition of NaSi under vacuum. The single crystal study revealed that the Na excess type II compound crystallizes in space group Fd3̅m with a lattice parameter of a = 14.796(1) Å, slightly larger than that of the ambient phase (Na24Si136), and the large silicon hexakaidecahedral cages (@Si28) are occupied by two sodium atoms disordered in the two 32e sites around the center of the @Si28 cages. At temperatures <90 K, the crystal symmetry of the compound changes from the face-centered to the primitive cell with space group P213, and the Na atoms in the @Si28 cages are aligned as Na2 pairs. The temperature dependence of the magnetic susceptibility of Na30.5Si136 suggests that the two Na ions (2 Na(+)) in the cage are changed to a Na2 molecule. The Na atoms of Na30.5Si136 can be deintercalated from the cages topochemically by evacuation at elevated temperatures. The single crystal study of the deintercalated phases NaxSi136 (x = 25.5 and 5.5) revealed that only excess Na atoms have disordered arrangements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.