Abstract

Recently, filling zeolites with gaseous hydrocarbons at high pressures in diamond anvil cells has been carried out to synthesize novel polymer-guest/zeolite-host nanocomposites with potential, intriguing applications, although the small amount of materials, 10-7 cm3, severely limited true technological exploitation. Here, liquid phenylacetylene, a much more practical reactant, was polymerized in the 12 Å channels of the aluminophosphate Virginia Polytechnic Institute-Five (VFI) at about 0.8 GPa and 140 °C, with large volumes in the order of 0.6 cm3. The resulting polymer/VFI composite was investigated by synchrotron X-ray diffraction and optical and 1H, 13C, and 27Al nuclear magnetic resonance spectroscopy. The materials, consisting of disordered π-conjugated polyphenylacetylene chains in the pores of VFI, were deposited on quartz crystal microbalances and tested as gas sensors. We obtained promising sensing performances to water and butanol vapors, attributed to the finely tuned nanostructure of the composites. High-pressure synthesis is used here to obtain an otherwise unattainable true technological material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.