Abstract

The supercooled liquid ${\mathrm{Zr}}_{41}{\mathrm{Ti}}_{14}{\mathrm{Cu}}_{12..5}{\mathrm{Ni}}_{10}{\mathrm{Be}}_{22.5}$ is studied using a high-pressure (HP) and high-temperature x-ray diffraction technique with synchrotron radiation, which allows us for the first time to in situ monitor the crystallization kinetics of metallic supercooled liquid in both cooling and heating processes under HP. We find that more than 6 GPa can completely suppress the crystallization in the melt at low cooling rate, and distinct crystallization from glassy to melt states during fast heating can be bypassed at 8.3 GPa. HP suppresses the crystallization in the supercooled liquid through increasing its viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.