Abstract

The structural phase transformations in the chalcopyrite semiconductor AgInTe2 have been studied up to 10 GPa on both pressure increase and decrease. The experiments were conducted using angle-dispersive X-ray diffraction with synchrotron radiation and an image plate. The diffraction patterns of AgInTe2 at ambient pressure reveal two coexisting phases: the first has the chalcopyrite structure while the second has a zincblende-like structure. On pressure increase both phases transformed at 3-4 GPa to a cation-disordered orthorhombic structure with spacegroup Cmcm. On pressure decrease, the chalcopyrite phase started to reappear at 0.55 GPa, and the Cmcm phase disappeared completely at ambient pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.