Abstract
ABSTRACTHexagonal (space group P63cm) form of YInO3 has been investigated under high pressure using synchrotron-based angle-dispersive X-ray diffraction and Raman scattering methods. Our experimental investigations suggest that it undergoes the phase transition to a new phase in the pressure range 12–15 GPa, while the ambient hexagonal phase is found to coexist with the new phase up to 29 GPa. DFT based calculations within the LDA approach on the hexagonal phase of YInO3 showed that the unit cell volume matches well with the experimentally obtained volume at ambient pressure. As the pressure increases, theoretically obtained values of unit cell volume of the hexagonal phase were found to be significantly lower than that of experimentally obtained values. This discrepancy has been corrected using LDA + UIn(4d) (Hubbard interaction parameter between Indium 4d electrons) method. We have proposed the high pressure phase of YInO3 to be orthorhombic with space group Pnma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.