Abstract

The structural behaviour of Cu0.5Fe0.5Cr2S4 has been studied experimentally and theoretically at pressures up to 44 GPa. The experiments are supported by density functional calculations using the full-potential linear muffin-tin orbital method for investigating ground state properties and high-pressure behaviour. We report here the first experimental and theoretical determinations of the bulk modulus: B0 = 106(2) GPa and B 0 0 = 4.0 (experimental), and B0 = 96 GPa and B

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.