Abstract

We report high-pressure Raman experiments on the tangential vibrational modes of CarboLex bundled single-walled carbon nanotubes up to 6.5 GPa using two different excitation energies: 1.96 and 2.41 eV. We show through the curve-fitting technique, together with the modified interband transition energies versus diameter plot, how the nature of the resonant tubes is modified under the excitation energy, in particular under the 1.96 eV excitation. Having metallic and semiconducting tubes in resonance at ambient pressure, we find that only semiconducting tubes are in resonance at 3.5 GPa. We associate this loss of resonance from the metallic tubes to a redshift pressure response of the first $({E}_{11})$ transition energies from these tubes. Added to that, the change in the excitation energies leads to a change in the value of the transition pressure. This is simply associated with the fact of having different diameters in resonance under each excitation from the same sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.