Abstract

Pressure up to 10 GPa is a powerful method for studying polymorphism in organic crystal structures, and this review surveys work carried out on high-pressure polymorphism in amino acids. High-pressure polymorphs have been established crystallographically for glycine, alanine, serine, cysteine and leucine. Phase transitions can be driven by the avoidance of very short intermolecular contacts or by promotion of a more stable molecular conformation. Experimental methods are also briefly surveyed, along with three methods that have proved very helpful in the analysis of high-pressure polymorphs, namely the PIXEL method for calculation of intermolecular energies, topological analysis with Voronoi–Dirichlet partitioning and Hirshfeld surfaces for gaining a graphical overview of intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.