Abstract

Two novel room-temperature phase transitions are observed, via synchrotron x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase transition takes place around 2-3 GPa, while this R1 phase transforms into another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2 acts as a pressure-induced structural bridge between the polar R3m and a predicted antiferrodistortive R-3c phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.