Abstract

Mo and W in the bulk silicate Earth and their partitioning behavior between molten metal and silicate can be used to constrain the thermochemical conditions during Earth’s core-mantle differentiation. In order to improve our understanding of core-forming conditions, we performed a series of superliquidus metal-silicate partitioning experiments on Mo and W at 40–93 GPa and 3000–4700 K in laser-heated diamond anvil cells. Under the extended P-T conditions directly relevant to terrestrial core formation in a deep magma ocean, we find that pressure and temperature have profound yet opposing effects on their partitioning, and a significant amount of O dissolved in the metal. Based on an activity model for liquid Fe-rich metal, it is observed that O enhances the solubility of both Mo and W in the metal, whereas S makes W significantly less siderophile than Mo. Combining our new data with those of the literature, we modeled the effects of pressure, temperature and metal composition on partitioning, and applied them to a multi-stage accretion model. While our model with homogeneous S accretion successfully explains the abundance of Mo, it underestimates that of W and therefore overestimates Mo/W ratio in Earth’s mantle, regardless of the oxidation conditions prevailing during core formation. On the other hand, mantle observables (Mo and W abundances, Mo/W ratio) can be reproduced simultaneously if S is supplied to the Earth towards the end of accretion. This corroborates previous work at lower pressures, and agrees with heterogeneous accretion models where the late volatile-rich delivery was envisaged to explain various isotopic signatures of terrestrial bodies. Nonetheless, this conclusion does not discriminate between reducing and oxidizing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.