Abstract

High-pressure oxy-fired direct contact steam generation (HiPrOx/DCSG) can be achieved by the oxy-combustion of fuels in the presence of water. This process is capable of producing flue gas streams containing approximately 90% steam with a balance of primarily CO2. The product flue gas is suitable for processes where the purity of the steam is less important, such as the steam-assisted gravity drainage process used for in situ production of bitumen within the Canadian oil sands. This study had three primary objectives: (1) To show that high-moisture HiPrOx/DCSG can be achieved with hydrocarbon fuels. For this purpose, n-butanol was used because of its high volatility and ease of handling. (2) To see if this technology could be applied to fuels with lower volatilities. This was studied by attempting to combust a graphite–water slurry as well as mixtures of graphite–water slurry and butanol. (3) To determine the effects of different fuel mixtures, oxygen-to-fuel ratios, and water inputs on process stability ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.