Abstract

Optical absorption spectra of siderite were taken across the high-spin (HS)-to-low-spin (LS) transition up to a pressure of 70 GPa in the spectral range between 28,500 and 10,000 cm−1. Up to a pressure of 44.5 GPa, a pair of two overlapping broad bands was observed that are caused by the electronic spin-allowed 5 T 2g → 5 E g transition of the octahedrally coordinated Fe2+. Furthermore, eight spin-forbidden bands are observable at high pressures up to 44.5 GPa, but they are gradually overlapped by the increasing high-energy absorption edge to be tracked down over the whole pressure range. Due to the HS-to-LS-spin-state transition of Fe2+ between 44.5 and 47.6 GPa, a new broad intense absorption band appears on the steep background of the edge, which is assigned to the electronic spin-allowed 1 A 1g → 1 T 1g transition of octahedral Fe2+ in LS configuration. We estimated a mean octahedral module $$\text{K}_{\text{oct}}^{\text{spectr}}$$ of Fe2+ in the LS state for pressure range 47.6–65.5 GPa as 263 (17) GPa. Especially, a strong intensification of the spin-allowed and spin-forbidden bands with increasing pressure is observed in the HS state. This is assumed to be caused by the borrowing of intensity from the UV absorption bands, which are allowed by the Laporte selection rule and are caused by electronic ligand-to-metal charge-transfer transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.