Abstract

The optical properties of a sparsely investigated material, LaGdO3 doped with Er3+, are explored regarding its suitability as nanothermometer. Besides its excellent capabilities for dielectric applications, when doping with Er3+, this material provides a highly efficient up-conversion photoluminescence (PL) for high temperature thermometry at high pressure due to its structural stability. LaGdO3 belongs to the perovskite-type ABO3 compounds with a B-type monoclinic C2/m space group (a = 14.43 Å; b = 3.69 Å; c = 9.00 Å; and β = 100.70º) at ambient conditions. It undergoes a structural phase transition to a hexagonal phase at 3 GPa yielding a notable PL enhancement, thus enabling it as a potential high-pressure high-temperature nanothermometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.