Abstract
The motion of liquid iron (Fe) alloy materials in the outer core drives the dynamo, which generates Mercury's magnetic field. The assessment of core models requires laboratory measurements of the melting temperature of Fe alloys at high pressure. Here, we experimentally determined the melting curve of Fe9wt%Si and Fe17wt%Si up to 17GPa using in situ and ex situ measurements of intermetallic fast diffusion that serves as the melting criterion in a large-volume press. Our determined melting slopes are comparable with previous studies up to about 17GPa. However, when extrapolated, our melting slopes significantly deviate from previous studies at higher pressures. For Mercury's core with a model composition of Fe9wt%Si, the melting temperature-depth profile determined in our study is lower by ∼150-250K when compared with theoretical calculations. Using the new melting curve of Fe9wt%Si and the electrical resistivity values from a previous study of Fe8.5wt%Si, we estimate that the electronic thermal conductivity of liquid Fe9wt%Si is 30 Wm-1K-1 at the Mercury's CMB pressure of 5GPa and 37Wm-1K-1 at an assumed ICB of 21GPa, corresponding to heat flux values of 23mWm-2 and 32mWm-2, respectively. These values provide new constraints on the core models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.