Abstract
AbstractThe heat extracted from the core by the overlying mantle across the core‐mantle boundary controls the thermal evolution of the core. This in turn leads to the solidification of the inner core in association with the exsolution of light alloying elements into the liquid outer core. Although the temperature (T) at the inner core boundary (ICB) would be adjusted to account for the effects of the light elements, the melting T of Fe places an upper bound at the ICB and it is a vital point in the thermal profile of the core. Here, we determine the melting T of Fe in the multi‐anvil press by characterizing the interface of Fe‐W interaction. Our data place a tighter constraint on the melting curve of Fe between 8 and 21 GPa, that is directly applicable to small planetary bodies and serves as an anchor for melting curve of Fe at higher pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.