Abstract

Photoluminescence spectra and luminescence kinetics of pure CaMoO4 and CaMoO4 doped with Ln3+ (Ln = Pr or Tb) are presented. The spectra were obtained at high hydrostatic pressure up to 240 kbar applied in a diamond anvil cell. At ambient pressure undoped and doped samples exhibit a broad band emission extending between 380 and 700 nm with a maximum at 520 nm attributed to the luminescence. CaMoO4 doped with Pr3+ or Tb3+ additionally yields narrow emission lines related to f–f transitions. The undoped CaMoO4 crystal was characterized by a strong MoO emission up to 240 kbar. In the cases of CaMoO4:Pr3+ and CaMoO4:Tb3+, high hydrostatic pressure caused quenching of Pr3+ and Tb3+ emission, and this effect was accompanied by a strong shortening of the luminescence lifetime. In doped samples, CaMoO4:Pr3+ and CaMoO4:Tb3+, quenching of the emission band attributed to was also observed, and at pressure above 130 kbar this luminescence was totally quenched. The effects mentioned above were related to the influence of the praseodymium (terbium) trapped exciton PTE (ITE—impurity trapped exciton) on the efficiency of the Pr3+ (Tb3+) and emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.