Abstract

TixCr1 − yFeyMn1.0 (x = 1.02, 1.05, 1.1, 0.05 ≤ y ≤ 0.25) alloys were prepared by plasma arc melting and annealing at 1273 K for 2 hours. The XRD results show that the main phase of all alloys is the C14 type Laves phase, and a little secondary phase exists in a mixture of the binary alloy phase. The lattice parameters increase with Ti super-stoichiometry ratio increasing, whereas smaller lattice parameters emerge with increasing Fe stoichiometry content. Additionally, as the Ti super-stoichiometry ratio decreases, the pressure-composition-temperature measurements indicated that hydrogen absorption and desorption plateau pressures of TixCr0.9Fe0.1Mn1.0 (x = 1.1, 1.05, 1.02) alloys increase from 3.15, 0.67, to 5.94, 1.13 MPa at 233 K, respectively. On the other hand, with the Fe content increasing in Ti1.05Cr1 − yFeyMn1.0 (0.1 ≤ y ≤ 0.25) alloys from 0.1 to 0.25, the hydrogen desorption plateau pressures increased from 1.41 to 2.46 MPa at 243 K. The hydrogen desorption plateau slopes reduce to 0.2 with Ti super-stoichiometry ratio decreasing to 1.02, but the alloys are very difficult to activate for hydrogen absorption and cannot activate when the Fe substituting for Cr exceeds 0.2. The maximum hydrogen storage capacities were more than 1.85 wt% at 201 K. The reversible hydrogen storage capacities can remain more than 1.55 wt% at 271 K. The enthalpy and entropy for all hydride dehydrogenation are in the range of 21.0 to 25.5 kJ/mol H2 and 116 to 122 J mol−1 K−1, respectively. Our results suggest that Ti1.05Cr0.75Fe0.25Mn1.0 alloy with low enthalpy holds great promise for a high hydrogen pressure hybrid tank in a hydrogen refueling station (45 MPa at 333 K), and the other alloys of low cost may be used for a potable hybrid tank due to high dissociation pressure at 243 K and high volumetric density exceeding 40 kg/m3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call