Abstract
This article reviews the application of high pressure gas xenon (HPXe) time projection chambers to neutrinoless double beta decay experiments. First, the fundamentals of the technology and the historical development of the field are discussed. Then, the state of the art is presented, including the prospects for the next generation of experiments with masses in the ton scale.
Highlights
The invention of the time projection chamber (TPC) [1] revolutionized the imaging of charged particles in gaseous detectors
Since the sensitivity of the search is proportional to the target mass, the apparatus needs to be as large and compact as possible, leading to either high pressure gaseous xenon (HPXe) or liquid xenon (LXe) TPCs
A detailed Monte Carlo study of the energy resolution that can be achieved in a high pressure xenon TPC with electroluminescent amplification (HPXe-EL TPC) as a function of the EL yield was performed in Oliveira et al [28]
Summary
The invention of the time projection chamber (TPC) [1] revolutionized the imaging of charged particles in gaseous detectors. Xenon TPCs have emerged as powerful tools for the study of rare events, in particular concerning dark matter and neutrinoless double decay (ββ0ν) searches Their principle of operation is the same as for all TPCs: charged radiation ionizes the fluid and the ionization electrons are drifted under the action of an electric field to sensitive image planes, where their transverse position information (X,Y) is collected. Since the sensitivity of the search is proportional to the target mass, the apparatus needs to be as large and compact as possible, leading to either high pressure gaseous xenon (HPXe) or liquid xenon (LXe) TPCs. the energy of the decay is relatively low (the end-point of the decay Xe → Ba++ + 2e−, Qββ , is 2458 keV [2]) and the tracks left by the two electrons can be rather short for HPXe detectors (of the order of 15 cm for electrons with Qββ energies at 15 bar) or even point-like objects for LXe chambers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.